SINGULAR LEVI-FLAT REAL ANALYTIC HYPERSURFACES By DANIEL BURNS and XIANGHONG GONG
نویسندگان
چکیده
We initiate a systematic local study of singular Levi-flat real analytic hypersurfaces, concentrating on the simplest nontrivial case of quadratic singularities. We classify the possible tangent cones to such hypersurfaces and prove the existence and convergence of a rigid normal form in the case of generic (Morse) singularities. We also characterize when such a hypersurface is defined by the vanishing of the real part of a holomorphic function. The main technique is to control the behavior of the homorphic Segre varieties contained in such a hypersurface. Finally, we show that not every such singular hypersurface can be defined by the vanishing of the real part of a holomorphic or meromorphic function, and give a necessary condition for such a hypersurface to be equivalent to an algebraic one.
منابع مشابه
ar X iv : 0 80 5 . 17 63 v 2 [ m at h . C V ] 1 4 Ju l 2 00 9 SINGULAR LEVI - FLAT HYPERSURFACES IN COMPLEX PROJECTIVE SPACE
We study singular real-analytic Levi-flat hypersurfaces in complex projective space. We give necessary and sufficient conditions for such a hypersurface to be a pullback of a real-analytic curve in C via a meromorphic function. We define the rank of a real hypersurface and study the connections between rank, degree, and the type and size of the singularity for Levi-flat hypersurfaces. Finally, ...
متن کاملLOCAL LEVI-FLAT HYPERSURFACES INVARIANTS BY A CODIMENSION ONE HOLOMORPHIC FOLIATION By D. CERVEAU and A. LINS NETO
In this paper we study codimension one holomorphic foliations leaving invariant real analytic hypersurfaces. In particular, we prove that a germ of real analytic Levi-flat hypersurface with sufficiently “small” singular set is given by the zeroes of the imaginary part of a holomorphic function.
متن کاملSingular Levi-flat Hypersurfaces and Codimension One Foliations
We study Levi-flat real analytic hypersurfaces with singularities. We prove that the Levi foliation on the regular part of the hypersurface can be holomorphically extended, in a suitable sense, to neighbourhoods of singular
متن کامل6 Extension of Levi - Flat Hypersurfaces past Cr Boundaries
Local conditions on boundaries of C ∞ Levi-flat hypersurfaces, in case the boundary is a generic submanifold, are studied. For nontrivial real analytic boundaries we get an extension and uniqueness result, which forces the hypersurface to be real analytic. This allows us to classify all real analytic generic boundaries of Levi-flat hypersurfaces in terms of their normal coordinates. For the rem...
متن کامل20 07 Extension of Levi - Flat Hypersurfaces past Cr Boundaries
Local conditions on boundaries of C ∞ Levi-flat hypersurfaces, in case the boundary is a generic submanifold, are studied. For nontrivial real analytic boundaries we get an extension and uniqueness result, which forces the hypersurface to be real analytic. This allows us to classify all real analytic generic boundaries of Levi-flat hypersurfaces in terms of their normal coordinates. For the rem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999